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Abstract 

In a typical cross-rotation function, the Patterson 
function of a single search molecule is compared with 
an observed Patterson function, which contains a set 
of symmetry-related intramolecular vector sets. In 
principle, it is better to search for the symmetry- 
related molecules simultaneously, and Nordman 
[Am. Crystallogr. Assoc. (1986), Hamilton, Ontario, 
Program Abstr. p. 36] has reported success with an 
algorithm of this type. In this paper, the differences 
between the ordinary search and a simultaneous 
search are investigated, and it is shown that the com- 
bined presence of crystallographic symmetry and 
approximate symmetry of a search model may lead 
to significant bias in conventional rotation functions. 
The nature and magnitude of this symmetry bias are 
discussed. An efficient algorithm is derived for gen- 
erating a modified unbiased cross-rotation function 
map from conventional rotation functions. Two 
examples are described that demonstrate improve- 
ment in the quality of the rotation function maps and 
the ability to obtain physically meaningful correlation 
coefficients. 

I. Introduction 

In the molecular replacement method, one begins 
with a search model which resembles the structure of 
the crystallized molecule, and attempts to determine 
its orientation and position in the unit cell. If the 
attempt is successful, approximate phases for the 
observed structure-factor amplitudes can be obtained. 
The first step is to determine the correct orientation 
of the model in the unit cell by analysis of rotation 
functions. Several methods for calculating rotation 
functions, both in Patterson space (Nordman & 
Nakatsu, 1963) and reciprocal space (Rossmann & 
Blow, 1962; Huber, 1969; Crowther, 1972) have been 
described. 

Orientational information can be obtained, in the 
absence of phase information, from a Patterson 
function corresponding to the observed intensities. 
The correct orientation of the model is determined 
by identifying orientations for which the Patterson 
function corresponding to the observed intensities 
resembles a Patterson function (or an interatomic 
vector set) corresponding to the oriented search 
model. For most space groups, there are multiple 
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copies of the molecule of interest in each unit cell, 
in orientations related by crystallographic symmetry. 
Each molecule contributes a set of intramolecular 
vectors (self vectors) to the observed Patterson func- 
tion, which consequently resembles a superposition 
of symmetry-related intramolecular vector sets. Now, 
consider a model which is in the same orientation as 
one of the molecules in the unit cell. Since this orienta- 
tion corresponds to a solution of the problem, it is 
expected that the oriented model Patterson func- 
tion will resemble the observed Patterson function. 
However, the contributions from the symmetry- 
related molecules to the observed Patterson may 
adversely affect the similarity between the observed 
and model Patterson functions. Fortunately, the sys- 
tematic error that arises from the presence of sym- 
metry-related molecules can be removed. In what 
follows, we derive the details of the desired correc- 
tion, including an efficient method for applying it, 
and discuss the nature of the modification and the 
cases for which it is expected to be significant. 

2. Derivation 

Consider a cross-rotation function between the 
observed Patterson function Po and the Patterson 
function of the search model Pro- Let the correlation 
between Po and Pm be C, which is a function of the 
orientation of the model. The orientation is expressed 
in terms of three Eulerian angles, a, fl and y, and 
R(a, fl, 7) is the rotation matrix associated with the 
angles. The correlation function C is given by 

c(,~, t3, ~,)=(Po(x)lP,[R(,~,~, ~/). x]) 

X(Po(x)lPo(x)) -'/~ 

x(P~[R(a,~, 7) .x]l 

x Pm[R(a,~, 7).  x]) -'/2 (1) 

where the brackets indicate the integral over space 
of the product of the two enclosed functions. The 
domain for the integration is usually taken to be a 
sphere centered on the origin. The terms in the 
denominator of (1) are normalization constants. Since 
the denominator  of (1) is independent of a,/3 and % 
we can write 

C(a, fl, 7)oC(Po(x)lP.,[R(a, fl, 7) • x]). (2) 
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The right-hand side of (2) is the value determined in 
ordinary summation-type rotation functions [Ross- 
mann & Blow (1962) and the 'fast rotation function' 
of Crowther (1972)]. 

Now, if there are n crystallographically related 
molecules in the unit cell, the observed Patterson 
function will consist of the superposition (or summa- 
tion) of n symmetry-related intramolecular vector sets 
(self vectors), as well as intermolecular vector sets 
(cross vectors) between symmetry-related molecules. 
In most rotation functions, the observed Patterson 
function is correlated with a Patterson function of a 
single search molecule. As previously mentioned, 
when the correlation function is calculated in this 
way, the ( n -  1) symmetry-related self-vector sets in 
the observed Patterson contribute to the background 
noise of the rotation function. Nordman (1986) has 
pointed out that it is better to evaluate the correlation 
between the observed Patterson and the superposition 
of symmetry-related self-vector sets of the model. 
Therefore, an improved correlation function, N, can 
be written as 

X(Po(x)]Po(x)) -'/2 

(3) 

where the S~ are the proper symmetry operations of 
the crystal point group. It is important to note that 
the rotations Si and R do not commute, and that the 
symmetry operations Si are applied after the rotation 
R. While the algorithm of Rossmann & Blow (1962) 
could be modified to evaluate (3) directly, this 
approach would be computationally intensive (at 
least n times as long as the ordinary cross-rotation 
function evaluation). In addition, the 'fast rotation 
function' algorithm (Crowther, 1972) cannot be 
modified to evaluate the expression in (3). Fortu- 
nately, (3) simplifies to a form which may be evalu- 
ated from two ordinary rotation functions of the type 
in (2). This simplification allows rapid evaluation, 
using fast rotation functions for cases where efficiency 
and speed are required. 

The 'symmetry-corrected' correlation, N(a,  fl, y), 
can be evaluated from a cross-rotation function and 
a self-rotation function, as follows. For simplicity, we 
temporarily substitute D for the denominator of (3). 

(Po(x)l(E,':, {Pm[S,. g ( a ,  fl, y ) .  x]})) 
N(a, /3,  y) = 

D 
(4) 

Rearrangement gives 

y) = Y,7=1 (Po(x)lP~[S~.R(a,~, y) .  x]) 
N(a, fl, 

D 
(5) 

Since the product integral in the numerator of (5) is 
not affected by rotating the Po and P,, functions 
simultaneously, 

rl 
.),) = Z , - ,  (Po(S:,' .x)lP,,,Lg(a,~, y) .  x]) 

N(a, fl, D 
(6) 

Since Si (and SF 1) are symmetry operations of the 
function Po, 

Po(S7, 1 . x ) =  Po(x) 

and 

S ( a ,  3, y)=n(Po(x)]Pm[R(a, fl, y) .  x ] ) /O  

ocC(a, fl, y)/D. (7) 

Therefore, the numerator of (3) corresponds to the 
usual cross-rotation function C( a, fl, y). 

Now we show how the denominator D can be 
determined from the self-rotation function of the 
model Patterson. Recall that 

D(a, fl, y) = (Po(x)lPo(x)) ~/2 

x _ {Pm[S,.R(a, fl, y) .x]}  
i = l  

(8) 

Since (Po(x)]Po(x)) 1/2 is independent of a, fl and y, 

Rearrangement gives 

D(a, fl, y)oc( ~ ~. (Pm[S,.R(a, fl, ~).x] l  
i = l  j = l  

1/2 
XPm[Sj.R(a,  fl, y) .  x]) (10) 

and 

D(a, fl, y)cc (  ~ ~ (P,,,(x)lP.,[R-'(a, fl, y) 
i = l j = l  

1/2 

.S7,1. .s j .g(a,  fl, y) .  x]) (11) 

The bracketed value in (11) corresponds to a value 
of the self-rotation function of the search model, 
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Table 1. R a n g e  o f  the symmetry-correc t ion  term f o r  cross-rotat ion f u n c t i o n s  

Results for  three different mode ls  in two different Laue  symmetr ies  are given. The  results are based  upon  calcula ted  intensi ty da ta  f rom 
10 to 2.5 A,, and a search radius of 14/1,. The structures of myoglobin (Kendrew et al., 1960; Watson, 1969) and cyctochrome c (Carter 
et al., 1985) were taken from the Brookhaven Protein Databank (Bernstein et al., 1977). See text for definitions. 

Number of Laue Range of the 
Model amino acids  symmetry (n) symmetry-correction term, D 

Polyalanine a-helix 20 mmrn (4) 0.81-1.99 
Polyalanine a-helix 20 4 / m m m  (8) 0.69-2.81 
Myoglobin helix no. 7 (residues 100-118) 19 mmm (4) 0.89-1.56 
Myoglobin helix no. 7 (residues 100-118) 19 4 / m m m  (8) 0.79-1.96 
Cytochrome c s 153 mmm (4) 0.93-1-29 
Cytochrome c 5 153 4 / m m m  (8) 0.86-1.47 

sampled at an orientation determined by 
R ( a , / 3 ,  3'), Si and Sj. Letting Q be the self-rotation 
function of the model, we obtain 

Q(a',/3', 3")=(Pm(x)lPm[R(a',/3', 3").x]>. (12) 

Equations (7), (11) and (12) give 

c(,~,/3, 3') 
/ I  ~.i N(a,/3, 3")oc[E,=iZs= 1Q(a,o,/3~, 3'~)]1/2 (131 

where a,~,/3,~, and 3'[j are defined by 

R ( a ~ ,  /3~, 3',~) = R-l(a , /3 ,  3'). $7, 1 . S~ . R ( a ,  /3, 3"). 

(14) 

Since (S~ -~ . Sj ) must also be a symmetry element, Sk, 
of the function Po, the denominator of (13) can be 
simplified to give 

Q(~,~,/3b, 3',~) 
i = l j = l  

= n Q(a 'k , /3 'k ,  3''k) (15) 
k = l  

From (13), the final form for N ( a , / 3 ,  3") is 

c (  ~, /3, 3") 
N ( a ,  /3, 3')°c [E~= 1Q(a'k,/3'k, 3"~)]1/2 

(16) 

where a~,/3~ and 3'~ are related to a,/3 and 3' by 

R ( a 'r , /3 'k , 3''k ) = R -  l ( a, /3, 3" ) . Sk . R ( a, /3, 3"). (17) 

Equations (16) and (17) show how N can be evalu- 
ated from the functions C and Q. The function C is 
a cross-rotation function, and Q can be computed 
from a single self-rotation function of the search 
model. In practice, a ' , /3 '  and 3" may not correspond 
to grid points in the discretely sampled self-rotation 
function. In such cases, interpolation or approxima- 
tion to the nearest grid point may be required. 

3. Difference between the ordinary rotation function 
and the modified rotation function 

The denominator of (16) is the symmetry correction 
term which relates the function N and the ordinary 
cross-rotation function C. This term is defined by the 

internal symmetry properties (Q) of the model and 
the symmetry (S) of the crystal, and is a function of 
orientation. 

When k = 1, with $1 the identity transformation, 
(12) and (17) show that the value of Q(a ' , /3 ' ,  3") is 
given by the value of the self-rotation function of the 
model at the identity transformation. When no 
approximate symmetry exists in the model Patterson 
function, Pro, the other terms ( k # l )  in the 
denominator of (16) will be small. In such a case, Q 
will be nearly independent of a ' , /3 '  and 3", and N 
will be nearly proportional to C. 

However, if Pm has some approximate internal 
symmetry, and can be oriented in such a way that it 
obeys a symmetry operation of 1'o to a significant 
degree, then the value of C will be greater in magni- 
tude than the value of N at that orientation. This 
result predicts that unusually large peaks (or valleys) 
may occur in ordinary rotation functions for orienta- 
tions at which the model approximates the observed 
crystalsymmetry. 

The significance, or lack of significance, of the 
symmetry-correction term is dictated by the range of 
the denominator in (16). This range depends strongly 
on the particular problem, but values for a few 
examples are given in Table 1. The correction terms 
have been scaled to correspond to an origin peak of 
magnitude one in the self-rotation function of the 
model. For small models, and particularly for models 
with real or approximate symmetry, the upper limit 
of the correction term may approach the square root 
of n. 

4. Examples 

The presence of symmetry bias in cross-rotation func- 
tions is illustrated by the cross-rotation function 
between a polyalanine a-helix and melittin, a com- 
ponent of bee venom. Melittin is a 26-amino-acid 
polypeptide, containing two a-helices (Terwilliger & 
Eisenberg, 1982). Structure factors were calculated 
from an idealized polyalanine helix in space group 
P1 and from melittin in the space group in which it 
was crystallized (C2221) .  Data between 10 and 2.5 .~ 
were used, with a search radius of 14/~. At this 
resolution, the helix resembles a radially symmetric 
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rod, and so the correct orientation of the helix about 
its long axis is difficult to determine from the cross- 
rotation function. In our calculation, this degree of 
freedom corresponds to the first Euler angle, a. Con- 
sequently, the angles /3 and 3' specify the direction 
of a helical axis, but not the orientation about the 
axis. A section (of constant a)  through a cross-rota- 
tion function between an a-helix and melittin is 
shown in Fig. 1. The section shows the true crystallo- 
graphic symmetry, as well as approximate symmetry 
corresponding to orientations of incorrect polarity 
for the helix, and approximate radial symmetry. Two 
unrelated peaks, corresponding to the two helices in 
melittin,* are seen in the rotation function (Fig. 1). 
However, the peaks are significantly skewed and 
shifted from their expected positions to positions 
corresponding to orientations at which the helix axis 
would lie in a crystallographic plane. At such orienta- 
tions, the ideal helix would approximately conform 
to one of the crystallographic twofold symmetry 
operations. The arguments of the previous sections 
have predicted bias towards these positions. 

The symmetry-correction function for this problem 
was evaluated, and the corresponding section is 
shown in Fig. 2. Pronounced peaks appear in the 
directions of the crystallographic axes, connected by 
ridges in the crystallographic planes. Division of the 
ordinary cross-rotation map by the symmetry-correc- 
tion map produces the map in Fig. 3. In this modified 

* The crystallographic asymmetric unit contains a melittin dimer 
with a non-crystallographic twofold nearly parallel to a crystal- 
lographic twofold axis. Therefore, peaks related by the non-crys- 
tallographic axis are nearly superimposed and indistinguishable 
in the rotation function. 

180 

*-y 
0 360 

Fig. 1. Symmetry bias in the cross-rotation function between a 
polyalanine a-helix and melittin. The map is a section of  constant 
a through the expected peak for the orientation of melittin helix 
no. 2. Due to approximate radial symmetry of the probe helix, 
the rotation function is nearly independent of  a and peaks 
corresponding to helix no. 1 and to helices of wrong polarity 
are all visible in one section. The expected directions for the 
axes of helices nos. 1 and 2 are labeled. Orientations of  incorrect 
polarity are labeled, and denoted by a prime ('). The remaining 
peaks are related by crystallographic symmetry. The correct 
peaks are not resolved from or distinguishable from peaks related 
by approximate symmetry and reverse polarity. The section is 
contoured at 1.20-, 1.40-, 1.6o" and 1.8o". 

map, the peaks appear nearer to their expected posi- 
tions, and the peaks become partially resolved from 
other peaks related by approximate symmetry. 

A more general example, where there is no obvious 
symmetry in the search model, is provided by the 
cross-rotation function of tetragonal hen egg white 
lysozyme (Diamond, 1974), using the amino-terminal 
half of the protein (residues 1-60 of 129) as the search 
model. 'Observed' structure factors were calculated 
from the complete atomic model in space group 
P432~2, excluding the solvent molecules. Data 
between 10 and 2.5 A were included and the Patterson 
search radius was 14 ,~,. 

In an ordinary fast rotation function, the highest 
peak in the map is 4.79 standard deviations above 
the mean value and corresponds to the correct 
orientation for the search fragment. Taking into 
account the constants in the denominator of (1), this 
peak has a correlation coefficient of 0.214. In addi- 
tion, five other distinct peaks exceed 2.5 standard 
deviations (see Table 2). A section through the asym- 
metric contents of the rotation function map is shown 
in Fig. 4(a). The correct peak and two other sig- 
nificant peaks are visible. 

The symmetry-correction map was generated as 
previously described. The correction term ranges from 

B 
180 

:60 

Fig. 2. Symmetry-correction map for the cross-rotation function 
between a polyalanine a-helix and melittin. Contours range 
from 1.2 to 1.8 in increments of 0.2. 

180, 

* 7  
160 

Fig. 3. Symmetry-corrected cross-rotation function between a 
polyalanine a-helix and melittin. The true helical directions for 
melittin helices nos. 1 and 2 are indicated. As before, the direc- 
tions corresponding to incorrect polarity of the helices are 
denoted by a prime ('). The section is contoured at 
1.20-, 1.4o-, 1.60- and 1.80-, as in Fig. 1. 
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Table 2. Peak statistics for the ordinary and modified cross-rotation functions 

Comparison of  the peak statistics for the ordinary and the modified cross-rotation functions for tetragonal lysozyme, using half of  the 
structure as the search model. See text. Peak no. 1 corresponds to the correct orientation of the model. Correlation coefficients are 
obtained from the rotation function values by evaluating the constant terms in the denominator of  equation (1). 

Ordinary rotation function Modified rotation function 

Height in standard Correlation coefficient Height in standard Correlation coefficient 
Peak no. deviations [C in equation (1)] deviations I N  in equation (3)] 

1 4.79 0-214 4.84 0.529 
2 3.22 0.144 2-83 0.309 
3 3-13 0.140 2.71 0.296 
4 3-01 0-134 2.83 0.309 
5 2.73 0.122 2.53 0-277 
6 2.72 0.122 2-45 0.267 

0.80 to 1-49. There is some coincidence between ele- 
vated regions in the correction map and some of the 
incorrect peaks in the cross-rotation function map. 
The corresponding section through this map is shown 
in Fig. 4(b). 

A symmetry-corrected map is obtained by dividing 
the cross-rotation function map by the correction 
map. In this new map, the correct peak is slightly 
higher in terms of standard deviations (4.84 tr), and 
all five of the incorrect peaks are reduced in sig- 
nificance (see Table 2). All three of the peaks above 
three standard deviations in the ordinary rotation 
function map are reduced to below three standard 
deviations. No additional significant peaks are pres- 
ent in the new map. The corresponding section of the 
modified map is shown in Fig. 4(c), and a modest 
improvement in the quality of the map is apparent. 
More striking than the slight improvement in the 

'1 r i 4 i i i i i I "  i r i i i r i r 

+ ~ r - ~ - t -  r - r  I r - -  ~ -  I J e - r  , - - r  , 

(a) (b) (c) 

Fig. 4. (a) Section of  constant a through the cross-rotation func- 
tion of tetragonal lysozyme, using half of  the protein as a search 
model. /3 is horizontal and 7 is vertical, with the axes marked 
in 10 ° increments. The correct peak is indicated by the solid 
arrow. The second highest noise peak in the map also lies in 
this section and is shown by the dashed arrow. (b) Corresponding 
section of  the symmetry-correction map. (c) Corresponding sec- 
tion of the symmetry-corrected map. The correct peak is slightly 
higher than in the ordinary cross-rotation map and the highest 
noise peak in the section is slightly lower. See text. All of  the 
maps are contoured at 1.5o, 2.0o', 2.5o', . . . .  

quality of the map is the dramatic increase in the 
actual values of the correlation coefficient (Table 2). 
The value of the new correlation coefficient I N  in 
(3)] for the correct peak is 0.529, which is reasonable 
for a search model that comprises half of the complete 
structure.* 

5. Concluding remarks 

In an ordinary cross-rotation function, the observed 
Patterson function (or Patterson map) is compared 
with various orientations of a Patterson function (or 
interatomic vector set) of a single model molecule. 
The fact that the observed Patterson function may 
contain several superimposed symmetry-related intra- 
molecular vector sets is usually ignored. Nordman 
(1986) has suggested the importance of accounting 
for these symmetry-related molecules in the cross- 
rotation function. The analysis presented in this paper 
validates this point, and elucidates the nature of the 
symmetry bias which occurs in an ordinary cross- 
rotation function. The bias results from interactions 
between the crystallographic symmetry and any real 
or approximate symmetry in the search model. The 
effect is most significant at orientations for which any 
approximate symmetry of the model resembles the 
crystallographic symmetry. The effect becomes 
increasingly significant with higher crystallographic 
symmetry, and more symmetrical search models. The 
analysis also demonstrates how the modified, or sym- 
metry-corrected, cross-rotation function can be evalu- 
ated efficiently from two ordinary rotation functions, 
thereby allowing the use of +fast rotation functions'. 

Examples with test cases show that modest 
improvements in the quality of the cross-rotation 
function maps can be achieved. Furthermore, the 
correlation coefficient from the modified rotation 
function, N, is physically more meaningful than that 

* A statistical argument suggests a value of (60/129) 1/2 = 0.682. 
The lower observed value of  0.529 can be attributed to the presence 
of intermolecular vectors in "Do" 



314 SEARCH FOR SYMMETRY-RELATED MOLECULES 

of the ordinary rotation function, as all molecules 
present are accounted for. In fact, in the test case, 
the correlation coefficient is consistent with the frac- 
tion of the structure present in the search model. This 
symmetry-corrected rotation function may therefore 
provide a more objective measure of the reliability 
of possible rotation function solutions. 

The ideas presented here also have implications 
for symmetry effects in self-rotation functions. Our 
analysis suggests that signal amplification will occur 
at orientations that leave the point-group symmetry 
of the crystal invariant. For example, in space group 
P3, we expect anomalously high peaks at orientations 
corresponding to 180 ° rotations about axes perpen- 
dicular to the threefold crystallographic symmetry 
axis. 

Discussions with D. C. Rees, B. T. Hsu and C. E. 
Nordman are appreciated. This is publication no. 
5597-MB of the Research Institute of Scripps Clinic. 
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Abstract 

Recently near-Gaussian distributions have been of 
much interest in the field of crystallographic statistics. 
In the present work, expressions for a truncated 
Cauchy distribution corresponding to acentric and 
centric cases have been derived. Expressions for P+, 
the probability of sign relations for centric crystals, 
and for P~, the probability of the tangent relationship 
for acentric crystals, have been derived on the basis 
of the Cauchy distribution of structure factor com- 
ponents. Theoretical N(Z)  curves for centric and 
acentric Cauchy distributions have been compared 
with those for acentric, centric and bicentric Gaussian 
distributions. The N(Z)  curve for the Cauchy acen- 
tric distribution follows closely that for the Gaussian 
acentric up to Z = 0.5. It then takes an upward turn 
and surpasses the Gaussian bicentric curve at high Z 
values. A similar trend is shown by the N(Z)  curve 

for the Cauchy centric distribution after being 
approximately intermediate between the Gaussian 
centric and bicentric cases up to Z = 0-5. The results 
of P+ and P~ have been compared with some known 
crystal data and the agreement is quite satisfactory 
for the cases studied. 

1. Introduction 

The intensity statistics introduced by Wilson (1949, 
1950) and its further extension to the phase problem 
by Cochran & Woolfson (1955) and by Cochran 
(1955) were based on the hypothesis that the struc- 
ture-factor components obey the Gaussian probabil- 
ity distribution law. Bertaut (1955, 1960), Klug (1958), 
Mitra & Belgaumkar (1973), Shmueli (1979), Shmueli 
& Wilson (1981) and others have used near-Gaussian 
functions like the Gram-Charl ier  and Edgeworth 
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